THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2014–2015) Introduction to Topology Exercise 4 Continuity

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Do the exercises mentioned in lectures or in lecture notes.
- 2. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be metric spaces. Can a function $f: X \to Y$ be continuous if \mathcal{T}_Y is discrete?
- 3. Let $\mathbb{R}_{\ell\ell}$ be the real line with lower-limit topology (generated by [a,b)) and \mathbb{R} be the standard real line. Give an example of continuous $f \colon \mathbb{R}_{\ell\ell} \to \mathbb{R}$ but it is not continuous when regarded as $\mathbb{R} \to \mathbb{R}$. Is there such an example for $\mathbb{R} \to \mathbb{R}_{\ell\ell}$?
- 4. Let $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ and \mathcal{S}_Y be a subbase for \mathcal{T}_Y . Is it true that f is continuous if and only if for every $S \in \mathcal{S}_Y$, $f^{-1}(S) \in \mathcal{T}_X$?
- 5. Let (X, \mathcal{T}) be a topological space and $A \subset X$. The subspace (or induced or relative) topology on A is $\mathcal{T}|_A = \{ G \cap A : G \in \mathcal{T} \}$. Suppose \mathcal{T}_A is another topology on A. Find a necessary and sufficient condition for the inclusion map $\iota \colon (A, \mathcal{T}_A) \to (X, \mathcal{T})$ such that $\mathcal{T}_A = \mathcal{T}|_A$.
- 6. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces. The (finite) product topology on $X \times Y$ is

$$\mathcal{T}_{X\times Y} = \{ U \times V : U \in \mathcal{T}_X, V \in \mathcal{T}_Y \} .$$

Show that the projection mapping $\pi_X: X \times Y \to X$ is both open and continous.

- 7. Refer to the above product topology on $X \times Y$, show that a function $f \colon Y \to X \times Y$ is continuous if and only if both $\pi_X \circ f \colon Y \to X$ and $\pi_Y \circ f \colon Y \to X$ are continuous.
- 8. Let $X \times X$ be given the product topology of X. Show that $D = \{(x, x) : x \in X\}$ as a subspace of $X \times X$ is homeomorphic to X.
- 9. Given a metric space (X, d), show that for each fixed $x_0 \in X$, the function

$$x \mapsto d(x, x_0): X \to \mathbb{R}$$

is continuous.

10. Given a metric space (X,d), define a function $\rho: X^2 \times X^2 \to [0,\infty)$ by

$$\rho((x_1, x_2), (y_1, y_2)) = \max \{ d(x_1, y_1), d(x_2, y_2) \}.$$

It is known that ρ is a metric on X^2 . Refer to this metric ρ , prove that the distance function $d: X \times X \to [0, \infty)$ is continuous.

- 11. Given a metric space (X,d) and a subset $A \subset X$, define $f \colon X \to [0,\infty)$ by $f(x) = \inf \{ d(x,a) : a \in A \}$. Show that f is a continuous function.
- 12. Let $f, g: X \to \mathbb{R}$ be continuous functions. Prove that the following sets are respectively open and closed, $\{x \in X : f(x) < g(x)\}$, and $\{x \in X : f(x) \leq g(x)\}$.

 This can be generalized if \mathbb{R} is replaced with Y of ordered topology.
- 13. Is it possible to find the following example? Justify your answer. Let $f: X \to Y$ be a continuous function between two metric spaces and B_k , $k \in \mathbb{N}$ be closed subsets in Y such that $\bigcup_{k=1}^{\infty} B_k$ is still a closed set. However, $\bigcup_{k=1}^{\infty} f^{-1}(B_k)$ is not closed in X.
- 14. Let $f: X \to Y$ be a continuous mapping. If $D \subset X$ is dense, is $f(D) \subset Y$ dense? What about the pre-image of a dense set?
- 15. Let $X = \bigcup_{\alpha} A_{\alpha}$ and each A_{α} be closed such that at every point $x \in X$, there is a neighborhood U of x that only intersects finitely many of A_{α} . Show that if each $f|_{A_{\alpha}}$ is continuous, then f is continuous on X.
 - Remark. Such a family of A_{α} is called locally finite.
- 16. Apply the Tietz Extension Theorem (lecture version) to show that a continuous function $f \colon A \to \mathbb{R}$ on a closed subset of a metric space X can be extended to $\tilde{f} \colon X \to \mathbb{R}$.

 Hint. Note that \mathbb{R} and (-1,1) are homeomorphic.
- 17. Is it possible to extend a continuous mapping $f: A \to \mathbb{R}^n$ on a closed subset of a metric space X? What if the target is \mathbb{S}^n ?
- 18. Give an example of $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ which cannot be extended to \mathbb{R}^2 .
- 19. Give an example of $f: X \to Y$ which is 1-1 and continous but X is not homeomorphic to its image f(X) as a subspace of Y.